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Abstract-- We describe a parallel genetic algorithm (GA) that automatically generates circuit

designs using evolutionary search. A circuit-construction programming language is introduced

and we show how evolution can generate practical analog circuit designs. Our system allows

circuit size (number of devices), circult topology, and device values to be evolved. We present

experimental results as applied to analog filter and amplifier design tasks.

I Introduction

Although the underlying concepts of using simulated evolution to manipulate hardware are

decades old, it is only in recent years that research in this area has attracted significant in-

terest [14, 5, 15, 16]. The nascent field of evolvable hardware studies how simulated evolution

can reconfigure, adapt, and design hardware structures in an automated manner. The field is

almost exclusively concerned with electronic circuitry, but application areas where other types of

oh,,'sical structures are designed o, _danted by artificial evolution certainly Fall within the pu_ie,,,,

of evolvable hardware (e.g., designs of trusses, antennas).

Analog circuits are of great importance in electronic system design since the world is fundamentally

analog in nature. While the amount of digital design activity far outpaces that of analog design,

most digital systems require analog modules for interfacing to the external world. Techniques for

analog circuit design automation began appearing about two decades ago (e.g., [18]). Efforts

using techniques from evolutionary computation have appeared ovtr the last few years. These

include the use of genetic algorithms (GAs) [6] to select filter component sizes [7], to select filter

topologies [4], and to design operational amplifiers using a small set of topologies [i0]. Various

analog filter design problems have been solved using genetic programming, and an overview of

these techniques, including eight analog circuit synthesis problems, is found in [9].

The remainder of the paper is as follows. First we discuss the genetic algorithm and the par-

allelization technique implemented in our software. Then we present the genetic representation

of analog circuits and describe the genetic algorithm that is used. The design tasks and the

experimental results from our evolutionary design program are then presented. We conclude with
a brief discussion of our results.

2 Genetic Algorithms

Genetic algorithms are a type of trial-and-error search technique that are guided by principles of

Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce



offspringthat arebetter adaptedto their environment,GAs expose genetic material, frequently

strings of ls and 0s, to the forces of artificial evolution: selection, mutation, recombination,

etc. GAs start with a pool of randomly-generated candidate solutions which are then tested

and scored with respect to their utility. Solutions are then bred by probabilistically selecting

high quality parents and recombining their genetic representations to produce offspring solutions.

Offspring are typically subjected to a small amount of random mutation. After a pool of offspring

is produced, this process iterates until a satisfactory solution is found or an iteration limit is

reached. Genetic algorithms have been applied to a wide variety of problems in many fields,

including chemistry, biology, and many engineering disciplines.

Paralletized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is

an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful

computing platforms, especially Beowulf-style computing clusters, are becoming more affordable

and easier to implement. In addition, the low communication bandwidth required allows the use

of inexpensive networking hardware such as standard office ethernet.

There are many styles of parallelism used in implementing parallel GAs [1]. We currently use a

master-slave [3] type of parallel genetic algorithm in our work on evolving analog circuits (Fig 1).

Also called a "processor farm," this style of parallelism automatically balances the computational

load among processors within each generation. The "master" processor maintains the population,

performs the genetic operations, and distributes the fitness evaluations to the nodes (the most

time consuming part). Each node processor runs a loop consisting of two main functions: ask

for a packet of individuals to process, and then process those individuals. Processing individuals

reqt, ires that each individual is decoded (into a circuit), simulated (using a circuit simulator), and

scored using a fitness function.
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Fig. 1: Parallelization of genetic algorithm showing overall tasks. Running circuit simulations in

parallel greatly reduces runtime since nearly all of the processing time is spent simulating circuits.

In Figure 2 we see how load balancing is achieved in a system of seven processing nodes. First,

assume all processors are busy doing fitness evaluations. Because of the nondeterministic nature

of genetic algorithms, fitness evaluations will take differing amounts of time. So, for example,

when node 5 finishes first (Figure 2(a)), it will contact the master node, make a connection,

send its results, and then receive a new packet of individuals to process (Figure 2(b)). The



slavenodeswill then return to full utilization (Figure2(c)). This "farm out work on demand"
algorithmensuresthat all nodesarekeptbusy.The onlytime whenprocessorscanbe left idle is
whena synchronizationeventoccurs. Forexample,at the end of a generation,processorsmay
sit idle if there are no more individualsremainingin the currentgenerationto process.After
all nodeshavefinishedevaluatingindividualsin the currentgeneration,the masterprocessorwill
createa newpopulationandthenbegintheprocessof "farmingout the work" again.To alleviate
synchronizationeventsat the endof eachgeneration,the GAcanbeconfiguredto runasasteady-
stateGA whereby there are no generations. Other parallel GAs exist where synchronization events
are not an issue.

(a)
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Fig. 2: Farming out work to the node balances the compute load between synchronization points.

Recently our group obtained a Beowulf computing cluster [17] consisting of commodity-class work-

stations running the Linux operating system. Using 32 Pentium III CPUs our system achieves a

SPECfp95 benchmark value of 500 very economically. We make use of dual processor worksta-

tions which are becoming a commodity item (previously, only single processor workstations were
commodity-priced). Linux is free and inexpensive to maintain, so the software costs are mini-

mal. Because our genetic algorithms evaluation functions typically do not need large datasets,

each of our nodes runs diskless. This has several advantages. First, it reduces the cost, power



consumption, and heat output of each node. Second, it alleviates maintaining n copies of the

operating system (where n is the number of nodes). Third, with no hard disks, the system is not

susceptible to disk failures which would typically crash the operating system and leave the node

useless until a new disk was installed. Fourth, there are no backups to make (only the server

node requires a backup procedure). For diagnostic messages, and applications where local data

storage is needed, each node can write data to the server's disk which is visible via a network

mount. Our cluster uses standard office ethernet since the interprocessor communication load is

low. It uses its own network switch on a private Class C internet subnet, so that the cluster will

still operate even if the building LAN experiences problems. In addition to being diskless, each

node workstation is also without a monitor, keyboard, and mouse which also reduces the cost.

Since all of the standard Internet utilities are available (e.g., telnet, rlogin), one can remotely

login to the nodes in lieu of having a keyboard, mouse, and monitor plugged into each node.

3 Circuit Representation in the GA

In designing an effective circuit representation for use in evolutionary search, the following prop-

erties are among the most desirable. First, the representation should permit any circuit or at

least a wide range of circuits to be represented. If it is known a priori that certain topologies are

well suited to a specific design task, topological restrictions inherent in the representation may

be beneficial since the search space will be reduced. Conversely, not having this limitation may

bring to light novel designs that human designers have never envisioned. Second, the genotype

conversion algorithm (the circuit constructing process) should run as fast ...,, _ossible. Clearly

if numerous traversals of the circuit graph structure are required in order to guarantee a valid

circuit graph, the performance hit will be commensurate. For an n-component circuit, a reason-

able upper bound would be O(n). Third, the representation should be syntactically closed so

that genetic operators do not create invalid circuit graphs I from those that are valid. The circuit

representation we r_resent here was designed to have these properties.

Circuit designs are constructed by an automaton that is programmed via a set of low-level instruc-

tions. This automaton is programmed in a small 'language" designed for building circuits. In

its current incarnation, the language contains only component-placing instructions (e.g., control

instructions are not included). This language has the desirable property that virtually all possible

sequences of instructions result in a valid electrical circuit. This property is important because it

greatly limits the "out-of-bounds" regions of the search space containing invalid circuit graphs.

Thus, evolutionary search will spend nearly all its time generating valid circuit graphs. While this

is a beneficial, non-trivial achievement, we do lose the ability to generate every possible circuit

topology. This is not considered a drawback for the circuit types we investigated since a vast

number of topologies and existing circuit designs could be encoded using this approach.

Each instruction places a circuit component and directs the movement of the automaton. The

five basic instruction types are: x-move-to-new, x-cast-to-previous, x-cast-to-ground, x-cast-to-

input, x-cast-to-output, where x can be replaced by R (resistor), C (capacitor), L (inductor),

INote that a graph could be a valid circuit graph, yet not make sense as an electrical circuit - for example,
dissimilar voltage sources connected in parallel.



or transistor configuration. In a circuit design task involving only inductors and capacitors (an

LC circuit), ten opcodes would be available to construct circuits (five for capacitors and five for

inductors).

The meanings of each instruction are summarized in Table 1. The move-to-new instruction places

one end of a component at the active node and the other at a newly created node (the "active"

node is the current location of the automaton). The newly created node then becomes the active

node. The cast-to instructions place one end of the component at the active node and the

other at either the ground, input, output, or previously-created node. After executing a cast-to

instruction, the automaton remains at the active node. The input and output nodes are the

overall input and output nodes of the circuit as opposed to the input and output of the placed

component, lllustrations of two instructions that place resistors are shown in Fig. 3.

Instruction Outgoing Node Active Node
x-move-to-new new node becomes new node"

x-cast-to-previous l_revious node unchanged

x-cast-to-ground ground node unchanged
x-cast-to-input input node unchanged

x-cast-to-output output node unchanged

Table I: Summary of opcode types used in current system, x denotes the component type:

resistor, capacitor, inductor, or transistor configuration.
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Fig. 3: Effect of plating a resistor with (a) move-to-new, and (b) cast-to-ground instructions.

The circuit is constructed by the automaton inside of a template circuit. The design tasks

presented here use a template having one input and one output terminal as shown in Fig. 4. An

ideal voltage source vs is connected to ground and to a source resistor Rs. The circuit's output

voltage is taken across a load resistor Rt.

The lists of instructions manipulated by the GA are variable-length lists so that the size of

the circuit can be evolved. When the automaton reaches the last component to place in the

circuit, we arbitrarily chose to have the last active node connected to the output terminal by a

wire (accomplished by connection of a 1#_ resistor). By doing so, we eliminate unconnected
branches.

As assembly language instructions are mapped to opcodes, our circuit-placing instructions are

mapped to bytecodes. Instructions are represented by up to four bytecodes. For instructions

that take a component value as an argument, the first byte is the instruction, and the next three
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Fig. 4: Template circuit: the evolved circuit is located between fixed input and output terminals.

vs is an ideal voltage source, Rs is the source resistance, Rz is the load resistance.

represent the component value (resistance, capacitance, and inductance values). For transistors,

component values are not needed. Using three bytes allows the component values to take on one

of 2563 values, a sufficiently fine-grained resolution. The raw numerical value of these bytes was

then scaled into a reasonable range, depending on the type of component. Resistor values were

scaled sigmoidally between I and 100K ohms using 1/(I + exp(-1.4(10z - 8))) so that roughly
75% of the resistor values were biased to be less than 10K ohms. Capacitor values were scaled

between approximately 10 pF and 200 #F and inductors between roughly 0.1 mH and 1.5 H.

4 Design Tasks

The design tasks considered in this paper are analog circuits for filtering and amplification appli-

cations. A low-pass filter is a circuit that allows low frequencies to pass through it, but stops high

frequencies from doing so. In other words, it is frequency selective in that it "filters out" frequen-

cies above a specified frequency. The unshaded area in Fig. 5(a) depicts the region of operation

for low-pass filters. Below the frequency fp the input signal is passed to the output, potentially

reduced (a_tenuated) by Kp decibels (dB). This region is known as the passband. Above the

frequency fs, in the region is called the stopband, the input signal is markedly decreased by Ks

decibels. Between the passband and stopband the frequency response curve transitions from low

to high attenuation. The parameter located in this region, fc, is known as the cutoff frequency.

The amplifier design task chosen was the inverting operational amplifier. Such a circuit has found

wide application and is considered one of the workhorses of analog circuit design. Figure 5(b)

shows the symbol and connections for an ideal inverting amplifier. This circuit generates an

output voltage (Vo) that consists of the input voltage (vi) multiplied by a gain factor, A. Voltage

gain is thus equivalent to Vo/Vi. It is common to express gain values in decibels (dB) using

20 logl0(A ). Amplifiers may be either inverting or non-inverting, where an inverted output signal

has a 180 ° phase shift compared to the input. The dc gain of the amplifier refers to the gain

when only constant voltage/current sources are applied. The linearity of the gain is the degree to

which the gain remains constant across input voltages: ideally the voltage transfer characteristic

(Vo vs. v,) should be linear. The dc component that shifts the entire signal up or down is

called the dc bias of the circuit. Power dissipation is the amount of power used by the circuit

and is indicative of the amounts of current flowing in the circuit. For simple amplifiers, there



are publications available that catalog many designs. Since there are numerous parameters in

amplifier design (e.g., input/output impedance, power dissipation, distortion, common-mode

rejection, power supply rejection), the design task can become quite challenging and typically

requires an experienced designer. For the amplifier design experiment below, we take into account

four objectives: dc gain, linearity of gain, dc bias, and power dissipation.

I I

pa_band--_ . _ stc _band

[p[c[s

frequency

RFB

(b)

Fig. 5: (a) Low-pass filter terminology and specifications. The shaded regions represent out-of-

specification areas. An example frequency response curve that meets specifications is shown. (b)

Ideal inverting amplifier showing how gain is set by the ratio of the feedback to source resistor.

5 Experimental Results

In this section we present experimental results for two design tasks: an analog filter and an analog

amplifier. In each case, a set of specifications was defined and a circuit was evolved that satisfied

those specifications.

5.1 Filter Design Task

In the filter design experiment, 10 GA runs were performed. Below we present the circuit having

the highest fitness value across all runs. Fitness was calculated to promote the regression of the

evolved circuit's frequency response toward that of the target. Error values were computed as

the absolute value of the difference of the individual's output and the target output. These error

values were summed across evaluation points to arrive at a fitness value.

The target specifications for this experiment was: /p = 1000 Hz, ]'s = 2000 Hz, Kp = 0.01 dB,

Ks = 63.50 dB. These specifications are similar to the fifth-order elliptic filter described in [9].

In that work, the evolved LC circuit satisfies Kp = 0.3 dB and Ks = 60 dB. Another evolved

low-pass filter circuit [19] had the same stopband and passband frequencies, but less demanding

attenuation specifications (Kp = 1.6 dB and Ks = 24.8 dB). The evolved circuit is shown in

Fig. 6(a) and its frequency response is seen in Fig. 6(b). Micro-ohm resistors were added as a



convergenceaid for the circuit simulator,andcanbeignored for analytical purposes. This circuit

was found in generation 997 of a run that had a population size of 1000.

(a) (b)

Fig. 6: (a) Evolved circuit satisfying target specifications. (b) Frequency response for evolved

analog filter.

5.2 Amplifier Design Task

r-or the amplifier desig,; task 10 GA runs were performed and we present the highest performance

circuits found across all runs. The goat was to design an inverting amplifier capable of a dc voltage

gain up to a maximum of either 100 dB, while minimizing dc bias and maximizing linearity over

the dc gain. Population size was set to 1200 individuals, and each run proceeded for 5000

generations, giving a total of 6 million circuit evaluations per run. For an ideal inverting amplifier

(as shown in Fig. 5(b)), the magnitude of the gain of the amplifier is simply RFB/RS, where Rs

is th_. source resistor. Fitness was calculated in a manner similar to the work on amplifiers in [9!

An error value is computed as the sum of the dc gain penalty (the target gain minus the observed

gain), the dc bias (zero dc bias is ideal), and the degree to which the dc gain is linear.

The evolved amplifier having the best performance had a dc gain of 85.41 dB (18,642.33).

Figure 7 shows the schematic for this circuit. It was found in generation 3635, and had a dc

bias of 5.44 volts and a power dissipation of 8.17 watts. The dc current delivered to the load

is mostly supplied by the 15 volt battery attached to the collector of transistor Q7. Transistor

Q7 is conducting with the sum of its base and collector currents flowing out of its emitter. Q7's

base current of 13 mA is supplied by transistor Q6.

Input signal inversion and amplification are seen in Figure 8(a) which shows the time domain

response to an ac input of 1 microvolt at 1 kHz. The circuit has a flat-band gain of 85.46 dB

and a 3 dB bandwidth of 282.8 kHz (Figure 8(b)). The 3 dB bandwidth is significantly better

than the previous amplifier.
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Fig. 7: Circuit schematic of evolved 85 dB amplifier.
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Fig. 8: Small signal behavior of 85 dB evolved amplifier: (a) time domain input waveform is ]

kHz (bo_;.ai.,) which is inverted ano amplif,ed (top); (b) frequency response showing a flatband
gain of 85.46 dB.

6 Discussion

Through the use of a parallel genetic aicorithm, we have presented encoura_in 8 results of an

evolvable hardware system capable of automatically designin_ analog circuits. We presented a

master-slave genetic alsorithm that is able to keep processors fully utilized within generations.

We showed that a linear circuit representation and evolutionary search can automatically pro-

duce circuit designs of low to medium difficulty in two applications. Detailed simulations of the

evolved designs suggest that all are electrically well behaved and thus suitable for physical im-

plementation. The circuit representation method devised permits a wide ran_;e of circuits to be

constructed, and results in a construction process that is unburdened with repair operations. To

gain performance on par with circuits designed by engineers, it will be necessary to place further

constraints into the fitness functions. For example, practical amplifiers are typically judged by a

dozen or so specifications. To evolve an amplifier that would perform as well would require usin_

a multiobjective fitness function that accounts for each specification. With the recent addition of

a Beowulf computing cluster, we are optimistic that adding further design constraints will remain

tractable for evolutionary design.
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